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1 Introduction

Machine learning models, especially deep neural net-
works, have shown great success across many disci-
plines, including computer vision [5, 6] and natural lan-
guage processing [2]. While these models achieve high
average accuracy on examples from the same distribu-
tion as their training data, their ability to generalize ef-
fectively remains in question. For example, the au-
thors of [7] study the performance of object classifiers
trained on ImageNet or CIFAR-10 by evaluating them on
newly created test sets. By closely following the original
dataset creation processes to generate the new data, the
authors are able to study generalization in a benign envi-
ronment. Even in this simple setting, they find ImageNet
classification models perform 11-14% worse on the new
test set when compared to the original test data. They
conclude that “current classifiers still do not generalize
reliably”.

This problem is exacerbated when looking at the gen-
eralization performance on rare or atypical instances [3,
9]. Such examples are usually referred to collectively as
the long-tail of the distribution. Many modern datasets
for visual object recognition are known to be long-
tailed—a few objects (or visibility patterns of a specific
object) occur frequently, while many objects (or visibil-
ity patterns) occur infrequently, yet the total weight of
these infrequent examples is a significant fraction of the
dataset [3].

Naturally, learning to accurately model and predict
atypical instances is a challenging problem, especially
when current deep learning models primarily aim to min-
imize average error objectives. As a result, these net-
works often exhibit highly variable performance across
examples from rare subpopulations [9]. When the num-
ber of such subpopulations is large however, as in long-
tailed distributions, a model’s performance on infrequent
examples can even affect its average generalization per-
formance. Thus, to improve the true accuracy of modern
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machine learning algorithms, it is necessary to consider
generalization both in the context of common instances,
and in the case of instances which appear only once, or a
few times, in the training data.

Recent theoretical results [3] suggest that memoriza-
tion of outlier labels is necessary for achieving close-to-
optimal generalization error in the context of long-tailed
distributions. Follow up work takes this claim a step
further, arguing that “every sufficiently accurate train-
ing algorithm must encode essentially all the informa-
tion about a large subset of its training examples” [1].
Intuitively, memorizing examples from subpopulations
which appear only once (or a few times) makes sense—
how else can a model generalize from one instance?
Yet, this notion is in conflict with conventional beliefs
which suggest memorization is detrimental to general-
ization. While overparameterized deep neural networks
may have the capacity to implicitly memorize training
examples, state-of-the-art object recognition models are
not designed to explicitly memorize long-tailed distribu-
tions.

In this project, we aim to build on and test the re-
cent theoretical work suggesting memorization is nec-
essary for generalization by building a novel computer
vision architecture which explicitly encodes this hypoth-
esis. Specifically, the goal of our model is to concisely
represent each training example and then use this infor-
mation to classify future inputs. Our design takes inspi-
ration from convolutional neural networks (known to ex-
tract useful image representations), k-nearest neighbor
models (which explicitly memorize the training data),
and transformer networks (useful for contextualizing a
representation based on other information). We describe
our intitial design in more detail in Section 3. We plan to
evaluate our proposal by studying the generalization er-
ror and comparing against existing computer vision mod-
els (CNNs) and algorithms which naively memorize the
training data (k-NN). Beyond average accuracy, we will
study model and baseline performance on atypical sub-
groups and evaluate worst-group accuracy.
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2 Related Work

There are numerous works in the literature discussing
machine learning algorithms and generalization. In addi-
tion to the theoretical works mentioned above, here, we
focus on topics related to the hypothesis that memoriza-
tion may improve generalization, especially in the case
when the distribution is long-tailed.

Empirical Results on Memorization We are not
aware of any computer vision works which empirically
study models designed to explicitly memorize large frac-
tions of the training images. However, overparameter-
ized neural networks are known to have the capacity to
memorize, even exhibiting the ability to fit completely
random labels [10]. Further, recent trends seem to in-
dicate that larger models generalize better. Addition-
ally, some experiments have identified training images
which appear to be memorized when using conventional
models on standard benchmark datasets [4]. Removing
these images decreases the accuracy of the model. Sim-
ilarly, training algorithms which explicitly limit mem-
orization, such as those use to achieve differential pri-
vacy, are known to perform worse than standard algo-
rithms [3]. While these results indicate a possible cor-
relation between memorization and generalization, here
we propose a model which aims to encode this hypothe-
sis explicitly.

Subgroup and Long-tail Accuracy A number of
other works focus on improving the accuracy of un-
derperforming subgroups. When subgroup labels are
known, robust optimization techniques can improve
worst-group accuracy [8]. More recent work [9]
aims to improve performance when subpopulations are
unlabeled—as is often the case for long-tailed distribu-
tions (e.g. rare visibility patterns). This technique makes
use of clustering in image representation space to esti-
mate subclass labels, and then uses this information for
robust optimization. While these techniques improve
generalization on tail examples by training to minimize
the worst-group error, here we aim for the same goal,
but by using an architecture which memorizes training
instances.

3 Proposed Approach

In this section, we present our (initial) proposed ar-
chitecture to incorporate explicit memorization of train-
ing examples into modern computer vision deep neural
networks. Our design is depicted in Figure 1. While
we wish to encode “essentially all the information about
. . . training examples”, raw image representations can be

hard to work with. Thus, the first stage of our design will
use an existing convolutional neural network architecture
(e.g. ResNet) to extract image representations (embed-
dings ei). All image representations for the training data
will be explicitly memorized by our model. To compute
the final output prediction, we plan to extend the basic
idea of the k-nearest neighbor algorithm—classify an ex-
ample based on the label of its neighbors—to include
the full representation of each neighbor. Concretely, we
plan to generate a contextual embedding (ci) for an im-
age based on the representation and label of each of its
neighbors—a set which we can find efficiently and accu-
rately using techniques such as locality sensitive hashing
(LSH). The contextual embedding will then be used for
the final classification. Motivated by recent work in natu-
ral language processing, we plan to use a transformer ar-
chitecture to compute the contextual representation from
an embedding and its neighbors.

A number of potential challenges and extensions to
this base idea exist. We expect the main implementa-
tion difficulty to be training the full model end-to-end
(i.e. differentiating through the neighborhood lookup).
We believe this can be done. Alternatively, we could
first train the CNN to produce meaningful representa-
tions (using self-supervised learning for example), and
then train the transformer separately. It may be interest-
ing to compare to this case even if the end-to-end training
is successful. The modularity of the design also allows
us to run interesting ablation studies. For example, we
can study the affect of image representations by training
our own CNN architectures or using massive pre-trained
networks, and we can evaluate the affect of memoriza-
tion and neighborhood aggregation by varying the trans-
former.

4 Timeline and Evaluation Plan
Our project and evaluation timeline are as follows:

• March 1: Implement the base CNN architecture.
• March 15: Implement the neighborhood lookup

(LSH) and transformer architecture.
• March 29: Finish implementing the end-to-end

training.
• April 12: Finish initial generalization experiments

and comparisons to baselines.
• April 26: Study finer-grained accuracy (long-tail)

and prepare presentation.
• May 5: Finish website.

As mentioned above, our main evaluation metrics will
consist of the average generalization error and the per-
formance on atypical subgroups. We plan to compare to
standard deep learning models for computer vision, and
simple models for explicit memorization.
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Figure 1: Graphical depiction of the proposed architecture to explicitly memorize training examples for image classi-
fication.
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