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1 Original Project Proposal
We begin by summarizing the project proposal as pre-

viously described. Specifically, our work is motivated by
the failure of current machine learning models to reliable
generalize—especially over long-tailed distributions1 or
minor variations between train and test data [2, 4, 5]. In
the former case, even state-of-the-art neural networks of-
ten exhibit highly variable performance across examples
from rare subpopulations [5]. Thus, in order to improve
the true generalization of modern machine learning algo-
rithms, it is likely necessary to consider their behavior on
both common instances and instances which appear only
rarely in the training data.

Recent theoretical results suggest that memorization
of outlier labels, and even whole training examples, is
necessary for achieving close-to-optimal generalization
error in the context of long-tailed distributions [1, 2]. In-
tuitively this makes sense (how else can a model gener-
alize from one instance?), but this notion is in conflict
with conventional machine learning beliefs, and state-of-
the-art models are not designed to explicitly memorize
(although they may have the capacity to do so).

In this project, our goal is to test the recent theoret-
ical claims suggesting memorization improves general-
ization by explicitly encoding this hypothesis into an ob-
ject recognition model. Concretely, we aim to build and
empirically study a novel computer vision architecture
which memorizes a representation for each training ex-
ample and then uses this information to help classify fu-
ture inputs. Our original proposal included an initial de-
sign towards this goal, taking inspiration from convolu-
tional neural networks (to extract useful image represen-
tations), k-nearest neighbor (k-NN) models (to explicitly
memorize representations and labels), and Transformer
networks (to contextualize representations) (Figure 1).

*https://rogerwaleffe.github.io/cs766/
1In long-tailed distributions a few objects occur frequently while

many objects occur infrequently.

We plan to evaluate our models by studying the gener-
alization error, worst-group accuracy under imbalanced
classes (to model atypical subpopulations), and by com-
paring to existing object classification models and algo-
rithms which naively memorize the training data.

2 Current Progress

In this section we describe current project progress and
highlight early observations and results. Based on our
original timeline, the goal was to finish the bulk of the
required programmatic development by March 29. This
included implementing a CNN architecture (ResNet [3])
and training procedure, nearest neighbor lookup over
stored representations of training data, and a Transformer
architecture to contextualize test embeddings based on
their neighbors. We have successfully met these imple-
mentation goals. In a minor deviation from the original
project proposal, we have decided to rely on L2 distance
rather than Locality Sensitive Hashing (LSH) to identify
neighbors. This change does not affect the functionality
of our architecture, but does slightly simplify our ‘dis-
tance metric’ between stored representations.

We have only just begun experiments, primarily to test
that each part of the architecture works as expected, but
have already noticed some interesting results. We report
these ‘sub-component’ experiments in Table 1. Standard
training of our ResNet-20 on the CIFAR-10 dataset re-
sults in 91.83% test accuracy. Basic memorization mod-
els (k-NN) achieve a slightly lower but comparable accu-
racy (91.00-91.73%). For these experiments, we memo-
rize the class label and representation after the average
pooling layer in ResNet for all training examples. We
classify a new test example by computing its represen-
tation, and then taking the majority class vote over the
nearest stored training embeddings. Note that how the
ResNet is trained prior to memorizing the training data
is likely to affect the accuracy of the k-NN models. As
we have only run experiments to test our code’s function-
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ality, results in Table 1 use a ResNet pretrained for clas-
sification, although pretraining using clustering or self-
supervised contrastive losses or end-to-end training of
our entire architecture may be more beneficial for mem-
orization.

We also tested our Transformer implementation which
aims to extend the functionality of the basic k-NN model.
Instead of a simple majority class vote over the nearest
neighbors, the Transformer takes as input the test embed-
ding plus the neighboring embeddings/labels and com-
putes a contextualized test embedding which is free to
incorporate information from the neighbors and/or their
labels. As for the basic k-NN model, results in Table 1
are just preliminary test results and use fixed embeddings
from our pretrained ResNet.

At the moment it seems as if the Transformer is not
extracting any additional useful information over the ba-
sic k-NN memorization model, but we remark that there
are a number of hyperparameters and training paradigms
we have yet to experiment with. Of specific interest is
the loss function used to train the Transformer. For the
current test experiment, we just used a linear transforma-
tion to classification loss on the contextualized embed-
ding (note that if the Transformer performs an identity
transformation then this is equivalent to a linear transfor-
mation after the average pooling layer—simply the base-
line ResNet), but we would really like a loss which forces
the Transformer to utilize information from the neighbor-
hood. End-to-end training of the entire architecture may
also help, as the Transformer can influence the distribu-
tion of the memorized embeddings.

Finally, to gauge the potential benefit of incorporating
memorization into standard object classification models,
we also ran an experiment where we evaluated the accu-
racy of a sudo-model—one which optimally (based on
the true class) picks whether to return the output of the
1-NN model or the ResNet. This model achieves 93% ac-
curacy, a 14% relative improvement over the CNN alone
with no additional training or parameters. While the op-
timal choice cannot be made in practice, this experiment
points to the possibility that a learned gating function
or combination of memorization with the initial ResNet
may be beneficial.

3 Updated Project Goal
Our primary project goal remains the same: study re-

cent claims suggesting memorization improves general-
ization by explicitly encoding this hypothesis into an ob-
ject recognition model. However, we think the project
proposal may have focused too much on a specific archi-
tecture (Figure 1). We plan to continue to study this de-
sign, but may also investigate other ways to incorporate
memorization. For example, based on the final experi-

Table 1: Initial experimental results.

Model Accuracy

ResNet-20 91.83
1-NN 91.00
10-NN 91.55
20-NN 91.73
30-NN 91.65
10-NN Transformer 91.38
Optimal Gate: 1-NN/ResNet-20 93.00

ment above, a learned gate may be worth investigating.
Additionally, we would like to consider ways other than
nearest neighbor style approaches to memorize training
examples and their labels.

We remark that the goal of our project is not to strictly
produce a model with higher accuracy, but rather to eval-
uate whether memorizing training examples can improve
performance. We may find that our attempts to include
memorization do not succeed—an interesting result in its
own right, as this may point to a contradiction with the
recently proposed theoretical results.

4 Timeline and Remaining Work
To finish our project in the next month, the remaining

work primarily consists of empirically evaluating differ-
ent configurations and training paradigms. Of specific
interest is to evaluate proposed memorization architec-
tures on atypical subgroups where they are explicitly hy-
pothesized to improve generalization (more so than they
may improve the average accuracy).

Our project timeline remains the same as outlined in
the original proposal:

• March 1: Implement the base CNN architecture.
• March 15: Implement the neighborhood lookup and

Transformer architecture.
• March 29: Finish implementing the end-to-end

training.
• April 12: Finish initial generalization experiments

and comparisons to baselines.
• April 26: Study finer-grained accuracy (long-tail)

and prepare presentation.
• May 5: Finish website.
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Figure 1: Graphical depiction of the originally proposed architecture to explicitly memorize training examples for
image classification.
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